EN
  • Anasayfa
  • MAT211 Diferansiyel Denklemler I (2024 - 2025 / 3. Yarıyıl)
  • EN
MAT211 - Diferansiyel Denklemler I
Ders Adı Kodu Yarıyıl T+U Saat AKTS Pdf
Diferansiyel Denklemler I MAT211 3 2 + 1 5,0 Pdf
Birim Bölüm
MATEMATİK
Derece Seviye Lisans - Zorunlu - Türkçe
Dersin Verilişi Yüz yüze
EBS Koordinatörü Dr. Öğr. Üyesi İlker Burak GİRESUNLU
Ders Veren Dr. Öğr. Üyesi Emrah HASPOLAT
Amaç

Mühendislikte, Fiziki bilimlerde ve pek çok bilim dalındaki problemleri çözümleyebilmek için gerekli olan matematiksel modellemeler sonrasında ortaya çıkan diferansiyel denklemleri tanıtmak ve çözüm yöntemlerini incelemek

Ders İçeriği

Diferansiyel denklemlerin tanımı ve sınıflandırılması, Başlangıç ve Sınır Değer Problemleri, Birinci mertebeden denklemler için Varlık ve Teklik teoremleri, Birinci mertebeden ve birinci dereceden Diferansiyel denklemler, Değişkenlere ayrılabilen denklemler, Tam diferansiyel denklemler, İntegral çarpanı, Birinci mertebeden lineer diferansiyel denklemler, Genel değişken değiştirmeler, Bernoulli diferansiyel denklemi, Riccati diferansiyel denklemi, Birinci mertebeden yüksek dereceden diferansiyel denklemler, Türeve göre çözülebilen diferansiyel denklemler, Aykırı Çözüm, p-diskriminantı, Zarf, C-diskriminantı, Türetme yöntemi, y ye göre çözülebilen diferansiyel denklemler,x e göre çözülebilen diferansiyel denklemler, Clairaut diferansiyel denklemi, Lagrange denklemi, n. mertebeden lineer diferansiyel denklemler teorisi. Tanım ve temel kavramlar, Diferansiyel Operatör, n. mertebeden lineer diferansiyel denklemlerin çözümleri ile ilgili temel teoremler

Ders Kaynakları Adi Diferensiyel Denklemler Prof. Dr. Mehmet ÇAĞLIYAN Yrd.Doç.Dr. Nisa ÇELİK Yrd.Doç.Dr. Setenay DOĞAN
Differential Equations, Shepley L. Ross, 3rd Ed., John Wiley & Sons, Inc., 1984
Açıldığı Öğretim Yılı 2012 - 2013 2013 - 2014 2014 - 2015 2015 - 2016 2016 - 2017 2017 - 2018 2018 - 2019 2019 - 2020 2020 - 2021 2021 - 2022 2022 - 2023 2023-2024 2024 - 2025
Yarıyıl İçi Çalışmalar Katkı Yüzdesi (%)
Ara Sınav 1 30
Kısa Sınav 1 10
Toplam 40
Yarıyıl Sonu Çalışmalar Katkı Yüzdesi (%)
Final %60
Toplam %60
Yarıyıl İçinin Başarıya Oranı %40
Yarıyıl Sonu Çalışmalar %60
Toplam %100
Kategori Ders İlişki Yüzdeleri (%)
Aktarılabilir Beceri Dersleri
0
Beşeri, İletişim ve Yönetim Becerileri Dersleri
0
Destek Dersleri
0
Ek Dersler
0
Kategori
0
Mesleki Seçmeli Dersler
0
Temel Meslek Dersleri
0
Uygulama Dersleri
0
Uzmanlık / Alan Dersleri
0
Ders İş Yükü Öğretim Metotlar / Öğretim Metodu Süresi (Saat) Sayısı Toplam İş Yükü (Saat)
Dinleme ve anlamlandırma Ders 4 14 56
Araştırma – yaşam boyu öğrenme, durumları işleme, soru geliştirme, yorumlama, sunum Sözlü 1 14 14
Önceden planlanmış özel beceriler Problem Çözme 4 14 56
Final Final 2 1 2
Ara Sınav 1 Ara Sınav 1 2 1 2
Toplam İş Yükü (Saat) 130
AKTS = Toplam İş Yükü (Saat) / 25.5 (s) 5,10
AKTS
Hafta Konu Öğretim Metodu
1 Diferansiyel denklemlerin tanımı ve sınıflandırılması
2 Başlangıç ve sınır değer problemleri, Birinci mertebeden denklemler için varlık ve teklik teoremleri, Birinci mertebeden ve birinci dereceden diferansiyel denklemler.
4 Değişkenlere ayrılabilen diferansiyel denklemler,Tam Diferansiyel denklemler.
5 İntegral Çarpanı. Birinci mertebeden lineer diferansiyel denklemler
6 Genel değişken değiştirmeler, Homojen diferansiyel denklemleri
7 Bernoulli Diferansiyel Denklemleri, Riccati Diferansiyel denklemler
8 Ara sınava hazırlık Ders
9 Birinci mertebeden yüksek dereceli denklemler, Türeve göre çözülebilen diferansiyel denklemler
10 Aykırı Çözüm, p-diskriminantı, Zarf, C-diskriminantı
11 Türetme yöntemi, y ye göre çözülebilen Diferansiyel denklemler, x e göre çözülebilen diferansiyel denklemler Ders
12 Clairaut Diferansiyel denklemi, Lagrange Diferansiyel denklemi
13 n. mertebeden lineer diferansiyel denklemler teorisi. Tanım ve temel kavramlar, Diferansiyel Operatör.
14 n. mertebeden lineer diferansiyel denklemlerin çözümleri ile ilgili temel teoremler. Ders
Ders Öğrenme Çıktısı Ölçme Değerlendirme Öğretim Metodu Öğrenme Faaliyeti
Diferansiyel denklemleri sınıflandırabilme Yazılı Sınav Ders Dinleme ve anlamlandırma
Adi Diferansiyel denklem-kısmi Diferansiyel denklem ayrımını yapabilme; Yazılı Sınav Ders Dinleme ve anlamlandırma
Birinci mertebeden diferensiyel denklemleri çözebilme Yazılı Sınav Ders Dinleme ve anlamlandırma
Birinci mertebeden adi diferansiyel denklemlerin temel varlık ve teklik teoremlerini ve çözüm yöntemlerini ifade edebilme Yazılı Sınav Ders Dinleme ve anlamlandırma
n. mertebeden lineer diferansiyel denklemler teorisini kavrayabilme Yazılı Sınav Ders Dinleme ve anlamlandırma
DERS ÖĞRENME ÇIKTISI
PÇ 1 PÇ 2 PÇ 3 PÇ 4 PÇ 5 PÇ 6 PÇ 7 PÇ 8 PÇ 9 PÇ 10
Diferansiyel denklemleri sınıflandırabilme - - - - - - - - - -
Adi Diferansiyel denklem-kısmi Diferansiyel denklem ayrımını yapabilme; - - - - - - - - - -
Birinci mertebeden diferensiyel denklemleri çözebilme - - - - - - - - - -
Birinci mertebeden adi diferansiyel denklemlerin temel varlık ve teklik teoremlerini ve çözüm yöntemlerini ifade edebilme - - - - - - - - - -
n. mertebeden lineer diferansiyel denklemler teorisini kavrayabilme - - - - - - - - - -