Ders Adı | Kodu | Yarıyıl | T+U Saat | AKTS | |
Matematiksel Biyoloji | MAT6030 | 3 + 0 | 7,5 |
Birim Bölüm | MATEMATİK - DR |
Derece Seviye | Lisansüstü - Seçmeli - Türkçe |
Dersin Verilişi | Yüz yüze |
EBS Koordinatörü | Dr. Öğr. Üyesi Emrah HASPOLAT |
Ders Veren | Dr. Öğr. Üyesi Emrah HASPOLAT |
Amaç |
Biyolojideki birçok reaksiyonun ifade edilmesi matematiksel modellerle mümkündür. Matematiğin biyolojideki kullanımının artması biyolojide yapılan çalışmalara olumlu etkiler doğurmuştur. Bu derste, analiz ve cebirdeki bazı temel kavramlar, fark denklemleri, diferansiyel denklemler gibi temel matematik kavramlarının değişik biyolojik olgularda nasıl kullanıldığı verilecektir. Bazı modellerin ise geometri, bilgisayarlarda sayısal hesaplama teknikleriyle nitel analizleri yapılacaktır. Bu derste temel bilimlerdeki öğrencilerin her türlü nitel ve nicel analiz yapma becerilerini kazanmaları sağlanacaktır. Biyolojideki uygulamalar kapsamı içinde çeşitli büyüme modelleri de yer almaktadır. |
Ders İçeriği |
Diferansiyel ve fark denklemleri ve biyolojideki uygulamaları. Doğrusal ve doğrusal olmayan diferansiyel denklemlerin biyolojideki uygulamaları. Sürekli diferansiyel denklem sistemlerinin kritik noktaların bulunması, kararlık analizi ve uygulamaları. Çatallanma teorisi ve uygulamaları. |
Ders Kaynakları |
An Introduction to Mathematical Biology, Linda J.S.Allen, Pearson, 2007.
Mathematical Biology, J. d. Murray, Springer-Verlag, Second, corrected edition, 1993. |
Açıldığı Öğretim Yılı | 2024 - 2025 |
Yarıyıl İçi Çalışmalar | Katkı Yüzdesi (%) |
Ödev 1 | 25 |
Ödev (Sunum) | 25 |
Toplam | 50 |
Yarıyıl Sonu Çalışmalar | Katkı Yüzdesi (%) |
Final | %50 |
Toplam | %50 |
Yarıyıl İçinin Başarıya Oranı | %50 |
Yarıyıl Sonu Çalışmalar | %50 |
Toplam | %100 |
Kategori | Ders İlişki Yüzdeleri (%) |
Aktarılabilir Beceri Dersleri
|
0
|
Beşeri, İletişim ve Yönetim Becerileri Dersleri
|
0
|
Destek Dersleri
|
0
|
Ek Dersler
|
0
|
Kategori
|
0
|
Mesleki Seçmeli Dersler
|
0
|
Temel Meslek Dersleri
|
0
|
Uygulama Dersleri
|
0
|
Uzmanlık / Alan Dersleri
|
0
|
Ders İş Yükü | Öğretim Metotlar / Öğretim Metodu | Süresi (Saat) | Sayısı | Toplam İş Yükü (Saat) |
Toplam İş Yükü (Saat) | 0 | |||
AKTS = Toplam İş Yükü (Saat) / 25.5 (s) | 0 | |||
AKTS |
Hafta | Konu | Öğretim Metodu |
---|---|---|
1 | Temel tanımlar ve notasyonlar | Ders |
2 | Lineer Fark Denklemleri ve Teorisi | Ders |
3 | Lineer Fark denklemlerinin biyolojik uygulamaları | Ders |
4 | Lineer olmayan Fark Denklemleri ve Teorisi | Ders |
5 | Lineer olmayan Fark denklemleri ile biyolojik modeller | Ders |
6 | Lineer Diferansiyel Denklemler ve Teorisi | Ders |
7 | Lineer Diferansiyel Denklemler ve biyolojik modeller | Ders |
8 | Ara Sınav | Problem Çözme |
9 | Lineer olmayan Diferansiyel Denklemler ve Teorisi | Ders |
10 | Lineer Olmayan Denklemler ve Biyolojik Modeller | Ders |
11 | Fark Denklem Modelleri için Kararlılık Analizi | Ders |
12 | Diferansiyel Denklem modelleri için Kararlılık Analizi | Ders |
13 | Çatallanma Teorisi ve Gecikmeli Diferansiyel Denklemler | Ders |
14 | Biyolojik Modeller için Çatallanma Analizi | Ders |
Ders Öğrenme Çıktısı | Ölçme Değerlendirme | Öğretim Metodu | Öğrenme Faaliyeti |
Modelleri kuramsal ve görsel anlayabilir. | Yazılı Sınav | Problem Çözme | Önceden planlanmış özel beceriler |
Doğrusal veya doğrusal olmayan dinamik sistemlerini çözebilir. | Yazılı Sınav | Problem Çözme | Önceden planlanmış özel beceriler |
Lineer olmayan modelleri linearleştirerek biyoloji problemlerinin kararlılıklarını yorumlayabilir. | Yazılı Sınav | Problem Çözme | Önceden planlanmış özel beceriler |
Veri analizinde biyoloji uygulamaları yapabilir. | Yazılı Sınav | Problem Çözme | Önceden planlanmış özel beceriler |
Populasyon ve benzeri modelleri yazabilir ve yorumlayabilir. | Yazılı Sınav | Problem Çözme | Önceden planlanmış özel beceriler |
Çatallanma Analizi yapabilir. | Yazılı Sınav | Problem Çözme | Önceden planlanmış özel beceriler |
DERS ÖĞRENME ÇIKTISI |
PÇ | PÇ | PÇ | PÇ | PÇ | PÇ | PÇ | PÇ | PÇ | PÇ |
---|---|---|---|---|---|---|---|---|---|---|
Modelleri kuramsal ve görsel anlayabilir. | - | - | - | - | - | - | - | - | - | - |
Doğrusal veya doğrusal olmayan dinamik sistemlerini çözebilir. | - | - | - | - | - | - | - | - | - | - |
Lineer olmayan modelleri linearleştirerek biyoloji problemlerinin kararlılıklarını yorumlayabilir. | - | - | - | - | - | - | - | - | - | - |
Veri analizinde biyoloji uygulamaları yapabilir. | - | - | - | - | - | - | - | - | - | - |
Populasyon ve benzeri modelleri yazabilir ve yorumlayabilir. | - | - | - | - | - | - | - | - | - | - |
Çatallanma Analizi yapabilir. | - | - | - | - | - | - | - | - | - | - |