PDF hazırlanıyor, lütfen bekleyin...
PDF
BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ
LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ
MATEMATİK - YL
(2025 - 2026)
Ders Bilgi Formu
Ders Adı
Kodu
Yarıyıl
T+U Saat
AKTS
Z / S
Konveks Analize Giriş
MAT5043
3 + 0
7,5
Seçmeli
Birim Bölüm
Matematik - YL -
Lisansüstü
(Yüz yüze)
Amaç
Bu dersin amacı, öğrencilere konveks analiz ve konveks optimizasyonun temel kavramlarını, teoremlerini ve yöntemlerini öğretmektir. Dersin sonunda öğrenciler, alttan ve üstten yarısürekli fonksiyonları anlamak ve açıklamak, konveks kümeleri ve fonksiyonları tanımlamak ve karakterizasyonlarını ifade etmek yeteneğine sahip olacaklardır. Ayrıca, öğrenciler konveks kümelerin ayırma teoremlerini ve konveks fonksiyonların Fenchel eşleniğini tanımlama ve ifade etme becerisi kazanacaklardır. Konveks optimizasyon problemlerini anlama ve çözme yeteneği, özellikle Fenchel duallığı kullanarak, bu dersin önemli bir çıktısıdır. Ayrıca, öğrenciler konveks kümelerin destek fonksiyonlarını, konveks fonksiyonların yönlü türevlerini ve subdiferansiyelini tanımlama becerisi kazanacaklardır. Konveks kümelerin teğet ve normal konilerini tanımlama yeteneği, aynı zamanda konveks küme değerli dönüşümleri anlama ve açıklama becerisi, dersin çıktılarından bir diğeridir. Bu yetenekler, öğrencilere konveks analiz ve optimizasyonun pratik uygulamaları konusunda derinlemesine bilgi ve anlayış sağlayacaktır. Bu ders, öğrencileri konveks analiz ve optimizasyonun güncel ve genişleyen araştırma alanlarına katılmak için iyi bir şekilde hazırlar.
Ders İçeriği
Alttan ve üstten yarısürekli fonksiyonları açıklayabilecektir.Konveks kümeleri, konveks fonksiyonları tanımlayabilecektir.Konveks fonksiyonların özelliklerini ve karakterizasyonlarını açıklayabilecektir.Konveks kümelerin ayırma teoremlerinin ifade edebilecektir.Konveks fonksiyonların Fenchel eşleniğini tanımlayabilecek ve temel özelliklerini ifade edebilecektir.Konveks optimizasyon problemlerini açıklayabilecek ve Fenchel duallik yardımıyla bu problemleri çözebilecektir.Konveks kümelerin destek fonksiyonlarını tanımlayabilecektir.Konveks fonksiyonların yönlü türevleri ve subdiferansiyelini tanımlayabilir.Konveks kümelerin teğet ve normal konilerini tanımlayabilecektir.Konveks küme değerli dönüşümleri açıklayabilecektir.
Ders Veren
Osman ALAGÖZ
Hafta
Konu
1
Alttan ve üstten yarısürekli fonksiyonlar
2
Konveks kümeler ve konveks fonksiyonlar. Örnekler
3
Konveks fonksiyonların sürekliliği
4
Konveks, alttan yarısürekli fonksiyonlar için Yosida-Moreau regularizasyonu
5
$x longrightarrow J_{lambda} x$ dönüşümünün özellikleri. Lipschitz süreklilik ve monotonluk
6
Hilbert ve sonlu boyutlu uzaylarda kesin ve kesin olmayan ayırma teoremleri
7
Konveks fonksiyonların Fenchel eşleniği ve özellikleri Fenchel-Young eşitsizliği
8
Konveks alttan yarısürekli fonksiyonon, bu fonksiyonun ikinci eşleniği ile eşitliği
9
Konveks optimizasyon problemi. Fenchel duallık teoremi
10
Konveks kümelerin dayanak fonksiyonları ve özellikleri
11
Konveks fonksiyonların yöne göre türevli ve subdiferansiyeli
12
Konveks fonksiyonlar için subdiferansiyel hesabı
13
Konveks kümenin tanjant ve normal konileri
14
Konveks küme değerli dönüşümler
Program Çıktıları
1
Disiplinler arası çalışmalar yürütebilecek ve çalışmalarını farklı disiplinlerle ilişkilendirebilecek düzeyde matematik kültür bilgisine sahip olur.
2
Mesleki ve etik sorumluluk bilincine sahiptir.
3
Alanındaki bir problemi, bağımsız olarak kurgulayabilme, çözüm yöntemi geliştirebilme, çözebilme, sonuçları değerlendirebilme, gerektiğinde uygulayabilme becerisine sahiptir.
4
Uzmanlık alanındaki bir problemi tanımlama, öğeler arası ilişkilendirme, çözüm üretme ve sentezleme becerisine sahiptir.
5
Alanının gerektirdiği bilgisayar yazılımı ve donanımı bilgisi ile birlikte bilişim ve iletişim teknolojilerini kullanabilir ve geliştirebilir.
6
Uzmanlık konusundaki kavramları ve yöntemleri bilir ve problem çözümünde uygular.
7
Alanındaki güncel gelişmeleri ve kendi çalışmalarını, alanındaki ve dışındaki gruplara, yazılı, sözlü ve görsel olarak sistemli bir şekilde aktarabilir.
8
Uzmanlık konusu ile ilgili olarak danışman yardımı ile bir rapor, bildiri ve tez hazırlar.
9
Uzmanlık konusu ile ilgili olarak seminer verir.
10
Uzmanlık alanındaki, ulusal ve uluslararası düzeydeki bilimsel gelişim ve değişimleri takip eder.
11
Alanı ile ilgili ileri düzeyde alan bilgisine, becerisine sahip olur ve bunu gerçek öğretim ortamlarında kullanır.
12
Bilimsel ve analitik düşünme becerilerini kullanarak, bilimsel araştırma yöntem ve tekniklerini bilir ve uygular.
Ders Öğrenme Çıktısı - Program Çıktıları (1 -5 Puan Aralığı)
Ders Öğrenme Çıktısı
PÇ 1
PÇ 2
PÇ 3
PÇ 4
PÇ 5
PÇ 6
PÇ 7
PÇ 8
PÇ 9
PÇ 10
PÇ 11
PÇ 12
Alttan ve üstten yarısürekli fonksiyonları açıklayabilecektir.
-
-
-
-
-
-
-
-
-
-
-
-
Konveks kümeleri, konveks fonksiyonları tanımlayabilecektir.
-
-
-
-
-
-
-
-
-
-
-
-
Konveks fonksiyonların özelliklerini ve karakterizasyonlarını açıklayabilecektir.
-
-
-
-
-
-
-
-
-
-
-
-
Konveks kümelerin ayırma teoremlerinin ifade edebilecektir.
-
-
-
-
-
-
-
-
-
-
-
-
Konveks fonksiyonların Fenchel eşleniğini tanımlayabilecek ve temel özelliklerini ifade edebilecektir.
-
-
-
-
-
-
-
-
-
-
-
-
Ortalama Değer
-
-
-
-
-
-
-
-
-
-
-
-
https://ebs.bilecik.edu.tr/pdf/dersbilgigetir/439314